On the numerical stability of the second barycentric formula for trigonometric interpolation in shifted equispaced points
نویسندگان
چکیده
We consider the numerical stability of the second barycentric formula for evaluation at points in [0, 2π ] of trigonometric interpolants in an odd number of equispaced points in that interval. We show that, contrary to the prevailing view, which claims that this formula is always stable, it actually possesses a subtle instability that seems not to have been noticed before. This instability can be corrected by modifying the formula. We establish the forward stability of the resulting algorithm by using techniques that mimic those employed previously by Higham (2004, The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal., 24, 547–556) to analyse the second barycentric formula for polynomial interpolation. We show how these results can be extended to interpolation on other intervals of length-2π in many cases. Finally, we investigate the formula for an even number of points and show that, in addition to the instability that affects the odd-length formula, it possesses another instability that is more difficult to correct.
منابع مشابه
On the backward stability of the second barycentric formula for interpolation
We present a new stability analysis for the second barycentric formula, showing that this formula is backward stable when the relevant Lebesgue constant is small.
متن کاملThe numerical stability of barycentric Lagrange interpolation
The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward stable. The barycentric formula has a less favourable error analysis, bu...
متن کاملTrigonometric Interpolation and Quadrature in Perturbed Points
The trigonometric interpolants to a periodic function f in equispaced points converge if f is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if f is continuous. What if the points are perturbed? With equispaced grid spacing h, let each point be perturbed by an arbitrary amount ≤ αh, where α ∈ [0, 1/2) is a fixed constant. The Kadec 1/4 theorem of samplin...
متن کاملEfficient High-order Rational Integration and Deferred Correction with Equispaced Data
Stable high-order linear interpolation schemes are well suited for the accurate approximation of antiderivatives and the construction of efficient quadrature rules. In this paper we utilize for this purpose the family of linear barycentric rational interpolants by Floater and Hormann, which are particularly useful for interpolation with equispaced nodes. We analyze the convergence of integrals ...
متن کاملStability of Barycentric Interpolation Formulas for Extrapolation
The barycentric interpolation formula defines a stable algorithm for evaluation at points in [−1, 1] of polynomial interpolants through data on Chebyshev grids. Here it is shown that for evaluation at points in the complex plane outside [−1, 1], the algorithm becomes unstable and should be replaced by the alternative modified Lagrange or “first barycentric” formula dating to Jacobi in 1825. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017